
MATH2050C Assignment 6

Deadline: Feb 26 , 2018.

Hand in: 3.4 no 7; 3.5 no 3, 5, 9; Supp Ex no. 1.

Section 3.4 no. 4, 7, 9, 11.

Section 3.5 no. 2, 3, 4, 5, 9.

Supplementary Exercises

1. Can you find a sequence from [0, 1] with the following property: For each x ∈ [0, 1], there
is subsequence of this sequence taking x as its limit? Suggestion: Consider the rational
numbers.

2. The concept of a sequence extends naturally to points in RN . Taking N = 2 as a typical
case, a sequence of ordered pairs, {an},an = (xn, yn), is said to be convergent to a if, for
each ε > 0, there is some n0 such that

|an − a| < ε , ∀n ≥ n0 .

Here |a| =
√
x2 + y2 for a = (x, y). Show that limn→∞ an = a if and only if limn→∞ xn = x

and limn→∞ yn = y.

3. Bolzano-Weierstrass Theorem in RN reads as, every bounded sequence in RN has a con-
vergent subsequence. Prove it. A sequence is bounded if |an| ≤ M, ∀n, for some number
M .

4. The Fibonacci sequence is defined by fn+1 = fn+fn−1, f1 = f2 = 1. Consider the sequence
{an} given by an = fn/fn+1. Establish the followings:

(a) 1/2 ≤ an ≤ 1.

(b) {an} is a Cauchy sequence.

(c) Find the limit of {an}.

Hint: Observe an+1 = 1/(1 + an).
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Essential 3.4 Bolzano-Weierstrass Theorem

In this section you should know

• Definition of the subsequence of a sequence. When a sequence is convergent, all its subse-
quences are convergent to the same limit. Consequently, a sequence is divergent if it has
two convergent subsequences with different limits.

• Bolzano-Weierstrass Theorem.

• Definition of a limit point. A bounded sequence is convergent if and only if its limit point
is unique.

• Definitions of the limit superior and limit inferior of a bounded sequence.

The main result in this section is:

Theorem 6.1 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent
subsequence.

Proof. Let {an} be a bounded sequence. Fix a closed, bounded interval I0 containing the se-
quence. We divide I0 equally into two closed, subintervals. Since the sequence has infinitely an’s,
one of these subintervals must contain infinitely many of them. Pick and call it I1. Next, we
divide I1 equally into two subintervals and apply the same principle to pick I2. Repeating this
process, we end up with closed intervals Ik, k ≥ 1, with the properties: For k ≥ 1, (a) Ik+1 ⊂ Ik,
(b) the length of Ik+1 is half that of Ik, and (c) there are infinitely entries from {an} sitting
inside each Ik. Applying Nested Interval Theorem, ∩∞k=1Ik = {ξ}. Now, we pick a subsequence
{bk} from each Ik to form a subsequence. This is possible because there are infinitely many an’s
in each Ik. Clearly, {bk} converges to ξ.

You may use this proof to replace the proof in Text.

A point a is called a limit point of the sequence {an} if it is the limit of a subsequence of {an}.
A bounded sequence has at least one limit point according to Bolzano-Weierstrass Theorem. A
properly divergent sequence does not have any limit point.

Theorem 6.2. A bounded sequence is convergent if and only if it has a unique limit point.

Proof. The only if part is obvious. We only consider the if part. Assume that there is only
one limit point a. Suppose on the contrary that the sequence does not converge to a. We can
find some ε0 > 0 and nk → ∞ such that |ank

− a| ≥ ε0. Since {ank
} is bounded, it contains a

subsequence {ankj
} which converges to some b satisfying |b− a| = limj→∞ |ankj

− a| ≥ ε0. Since

any subsequence of a subsequence is a subsequence of the original sequence, {ankj
} is again a

subsequence of {an}. Hence b is a limit point different from a, contradiction holds.

Let {an} be a bounded sequence. For each n ≥ 1, the number

βn = sup
k≥n

ak = {an, an+1, an+2, · · · } ,

is a real number. It is clear that {βn} is decreasing and bounded from below. By Monotone
Convergence Theorem, its limit exists. We call it the limit superior of the sequence of {an}.
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In notation,

lim an, or lim sup{an} = lim
n→∞

βn = inf{βn} = inf
n

sup{ak}k≥n .

Similarly, the number
αn = inf

k≥n
ak = {an, an+1, an+2, · · · } ,

is a real number. It is clear that {αn} is increasing and bounded from above. By Monotone
Convergence Theorem, its limit exists. We call it the limit inferior of the sequence of {an}.
In notation,

lim an, or lim inf{an} = lim
n→∞

αn = sup{αn} = sup
n

inf{ak}k≥n .

Theorem 6.2. For a bounded sequence, its supremum is its largest limit point and its infimum
the smallest limit point.

The following proof may be skipped in a first reading.

Proof *. Let β be the limit supremum of the bounded sequence {an} and let βn = {an, an+1, an+2, · · · , }.
First we claim that β is greater than or equal to any limit point of {an}. Let a = limnk

ank
. For

ε > 0, there is some nk0 such that a− ε < ank
for all nk ≥ nk0 . We have

βnk
= sup{ank

, ank+1, ank+2, · · · } ≥ ank
≥ a− ε ,

for all nk ≥ nk0 . As βn → β, we can fix an nk ≥ nk0 such that

β + ε > βnk
≥ a− ε.

We conclude that
β > a− 2ε.

Since ε > 0 is arbitrary, β ≥ a.

We claim there is a subsequence converging to β. Since β = limn→∞ βn = infn βn, for each
N ≥ 1, there is some n(N) such that

β +
1

N
> βn(N) ≥ β . (1)

In other words,

β +
1

N
> sup{an(N), an(N)+1, an(N)+2, · · · } > β − 1

N
.

From the definition of the supremum, we can find anN from {an(N), an(N)+1, an(N)+2, · · · } to
form a subsequence {anN } such that

βn(N) ≥ anN > βn(N) −
1

N
. (2)

Combining (1) and (2), we have

|anN − β| <
1

N
.

It follows that the subsequence {anN }∞N=1 converges to β. Similarly, one can treat the case of
limit inferior.
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Essential 3.5 Cauchy Convergence Criterion

In this section you should know

• Definition of a Cauchy sequence.

• Cauchy Convergence Criterion.

• Some examples (see 3.5.6 in Text, may skip 3.5.7-3.5.11.)

A sequence {an} is called a Cauchy sequence if for each ε > 0, there is some nε such that
|an − am| < ε, ∀n,m ≥ nε . The main result in this section is

Theorem 6.3 (Cauchy Convergence Criterion). A sequence is convergent if and only if it
is a Cauchy sequence.

Proof. ⇒. When {an} converges to a, for ε > 0, there is some nε such that |an − a| < ε/2 for
all n ≥ nε. By triangle inequality, for n,m ≥ nε, |an−am| ≤ |an−a|+ |am−a| < ε/2 + ε/2 = ε,
hence {an} is Cauchy.

⇐. Taking ε = 1, there is some n1 such that |an − am| < 1 for all n,m ≥ n1. It follows that
|an| ≤ |an1 |+1 which shows that {an} is a bounded sequence. By Bolzano-Weierstrass Theorem,
it has a convergent subsequence ank

→ a. For ε > 0, there is some n0 such that |ank
− a| < ε/2

for all nk ≥ n0. On the other hand, as {an} is Cauchy, for the same ε, there is some n1 such
that |an − am| < ε for all n,m ≥ n1. Taking n2 = max{n0, n1} and them choosing m = nk, for
nk ≥ n2, |an−a| ≤ |an−ank

|+|ank
−a| < ε/2+ε/2 = ε for all n ≥ n2, hence limn→∞ an = a too.

We end our discussion with a remark. The followings are equivalent:

• Order-Completeness Property: Every set bounded from above has a supremum.

• Nested Interval Property: Every nested closed, bounded intervals has non-empty intersec-
tion.

• Monotone Convergence Property: Every increasing sequence converges provided it is
bounded from above.

• Bolzano-Weierstrass Property: Every bounded sequence has a convergent subsequence.

• Cauchy Completeness Property: Every Cauchy sequence converges.

• Heine-Borel Property: Every covering of [a, b] by open intervals has a finite subcover.

We have learned the first five. A consequence of this equivalence is that one can deduce the
other five starting from any one of these properties. I leave the proof to those who are interested.
In my school days we used to spend a lot of time in proving all these things, but now it seems
to have become out of fashion!


